Technology developed and Recommended

Sr.	Recommendations
No. 1	Efficacy of different biocontrol agents against onion thrips, <i>Thrips tabaci</i> L. (2024) Foliar spray of either <i>Metarhizium anisopliae</i> AAU Ma1-1% WP (50 g/10 lit. of water) or Azadirachtin 10000 ppm (20 ml/10 lit. of water) for three times at ten days interval with the initiation of pest found effective for the management of thrips, <i>Thrips</i> <i>tabaci</i> infesting onion crop.
2	Development of low-cost production medium of biopesticide <i>Metarhizium anisopliae</i> , using spent larval medium of <i>Corcyra cephalonica</i> (2024) The use of sorghum grains 100 g (33.3 %) with spent larval medium 200 g (66.7 %) of <i>Corcyra cephalonica</i> found effective medium for the production of <i>Metarhizium</i> <i>anisopliae</i> AAUBC Ma1 with highest spore yield. The formulation <i>M. anisopliae</i> AAUBC Ma1 - 1% WP (1x10 ⁹ cfu/g) prepared from the above growth medium, applied once on tree trunk during the month of November @ 40 or 50 g/10 lit. of water and three sprays on foliage at ten days interval with the initiation of pest found effective against hoppers infesting mango.
3	 Bio-efficacy of different bioagents against early blight of potato (2024) The application of <i>Trichoderma harzianum</i> (AAUBC Th1, 2x10⁶ cfu/g) -1% WP and <i>Pseudomonas fluorescens</i> (NBAIR PfDWD, 2x10⁸ cfu/g)-1% WP through any of the following methods is effective for the management of early blight disease of potato. 1. Soil application of vermicompost enriched with bioagents (1.25 kg of each bioagent/250 kg vermicompost/ha) before planting, seed treatment (5 g of each bioagent/kg tuber) for 30 min. just before planting and two foliar sprays (2.5 g of each bioagent/litre of water), first spray starting with the appearance of the disease and second at 10 days after first spray. 2. Soil application of vermicompost/ha) before planting, seed treatment (10 g of <i>P. fluorescens</i>/250 kg vermicompost/ha) before planting and two foliar sprays (5 g of <i>P. fluorescens</i>/kg tuber) for 30 min. just before planting and two foliar sprays (5 g of <i>P. fluorescens</i>/kg tuber) for 30 min. just before planting and two foliar sprays (5 g of <i>P. fluorescens</i>/kg tuber) for 30 min. just before planting and two foliar sprays (5 g of <i>P. fluorescens</i>/litre of water), first spray starting with the appearance of the disease and second at 10 days after first spray. Note: For the preparation of vermicompost enriched with bioagents, mix the bioagents with vermicompost and keep for 10 days under shade
	• For seed treatment, mix the bioagents with equal quantity of plain talc powder for uniform treatment of tubers
4	 Evaluation of different modules against invasive thrips, <i>Thrips parvispinus</i> (Karny) in chilli (2024) The farmers of Gujarat are recommended to adopt following module for effective management of <i>Thrips parvispinus</i> in chilli Root dipping of chilli seedlings with imidacloprid 17.8 SL 10 ml per 10 litre of water for two hours before transplanting Application of Neem cake @ 250 kg/ha at the time of transplanting and 30 days after transplanting Installation of blue sticky trap @ 75 per hectare at 30 DAT

-	
	• Spraying of spinetoram 11.7 SC, 0.0117%, 58.50 g a.i./ha, 10 ml/ 10 litre of water at initiation of pest
	• Spraying of <i>Metarhizium anisopliae</i> 1.15% WP (1 x 10 ⁸ cfu/g) 50 g/ 10 litre of
	water after 10 days of first spray
	• Spraying of broflanilide 300 G/L SC, 0.005%, 25.2, g a.i./ha, 1.68 ml/10 litre of
	 water after 7 days of second spray Spraying of azadirachtin 10000 ppm 20 ml/ 10 litre of water after 10 days of third
	spray
	• Spraying of tolfenpyrad 15 EC, 0.030% 150 g a.i./ha, 20 ml/ 10 litre of water at 7
	days of fourth spray
5	Influence of habitat manipulation on incidence and severity of pest damage in
	cabbage (2023)
	Farmers of Gujarat growing cabbage are recommended to grow cabbage with
	vegetable cowpea as intercrop (5:1 rows) and one row of fodder oats as border crop or cabbage with oats as border crop to manage the population of aphids and diamond back
	moth (DBM), which enhances the natural enemies (<i>Coccinellids</i> and <i>Chrysoperla</i>) of
	insect pests infesting cabbage.
6	Development of biointensive pest management (BIPM) module for the management
	of shoot and fruit borer, Leucinodes orbonalis (Guenee) in brinjal (2023)
	The following components of bio-intensive pest management (BIPM) module
	found effective for the management of shoot and fruit borer, <i>Leucinodes</i>
	 orbonalis infesting brinjal. Intercropping of brinjal with coriander (seed purpose) (2:1 rows)
	 Clipping of damaged shoots
	 Installation of pheromone trap for <i>L. orbonalis</i> @40/ha at 30 DATP (Change lure
	at 21 days interval)
	• Three sprays of azadirachtin 10000 ppm (20 ml/10 litre water) at 30, 75, 105
	DATP, two sprays of Bacillus thuringiensis AAU-Bt1 (2x10 ⁸ cfu/g) 1% WP (50
	g/10 litre water) at 45, 90 DATP and one spray of entomopathogenic nematode
	(EPN) Steinernema carpocapsae 1% WP (80 g/10 litre water) at 60 DATP
7	Isolation, characterization and bioassay studies of Spodoptera frugiperda nuclear
	polyhedrosis virus (SfNPV) (2023)
	The maximum number of NPV infected larvae of fall armyworm, Spodoptera
	frugiperda found during cob formation stage of maize. The native isolate of SfNPV found
	to possess tetrahedral to hexagonal shaped POBs. The median lethal concentration (LC50)
	was 5.1 x 10 ⁶ POBs/ml and there was no cross infectivity of native isolate of <i>Sf</i> NPV against <i>Spodoptera litura</i> .
	aganist <i>Spouopieru mura</i> .
8	Bio-efficacy of different bioagents against early blight of tomato (2023)
	The application of Trichoderma harzianum (AAUBC-Th1)-1% WP (min. 2 x
	10^6 cfu/g) and <i>Pseudomonas fluorescens</i> (NBAIR PfDWD)-1% WP (min. 2 x 10^8 cfu/g)
	through any of the following methods found effective for the management of early blight
	disease of tomato. 1. Soil application of enriched vermicompost (1.25 kg of each formulation/250 kg
	vermicompost/ha) before transplanting, seedling root dip (5 g of each
	formulation/litre of water) for 30 min just before transplanting and two foliar sprays

	 (2.5 g of each formulation/litre of water), first spray starting with the initiation of the disease and second at 10 days after first spray. 2. Soil application of enriched vermicompost (2.5 kg of <i>P. fluorescens</i>/250 kg vermicompost/ha) before transplanting, seedling root dip (10 g of <i>P. fluorescens</i>/litre of water) for 30 min just before transplanting and two foliar sprays (5 g of <i>P. fluorescens</i>/litre of water), first spray starting with the initiation of the disease and second at 10 days after first spray.
9	Biological suppression of fall armyworm, <i>Spodoptera frugiperda</i> (J. E. Smith) (Lepidoptera: Noctuidae) in maize (2022) Three releases of <i>Trichogramma pretiosum</i> (50,000 eggs per ha) at weekly interval and spray of <i>Bacillus thuringiensis</i> NBAIR <i>Bt</i> G4 1% WP @ 50 g/ 10 lit. of water for three times at ten days interval with the initiation of pest found effective for the management of fall armyworm, <i>Spodoptera frugiperda</i> (J. E. Smith) in maize.
10	Evaluationofdifferentbio-pesticidesagainstfallarmyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in maize (2021)Noctuidae) in maizeApplicationof BacillusthuringiensisNBAIRstrain- Bt G4(1% WP - $2x10^8$ cfu/g)@ 50 g/10 litre water or Bacillus thuringiensisAAU strain - AAU Bt1(1%WP - $2x10^8$ cfu/g)@ 50g/10 litre for three times at ten days interval with the initiation of the pest found effective for the management of fall armyworm Spodoptera frugiperda in maize
11	Management of shoot and fruit borer, <i>Earias vittella</i> through biocontrol agents in okra (2020) The spraying of <i>Bacillus thuringiensis</i> var. <i>kurstaki</i> 1% WP @ 50 g/10 lit. water or NSKE 5% (500 g/10 litre water) at fifteen days interval for three times or six releases of <i>Trichogramma chilonis</i> @ 50,000/ha at weekly interval starting from the initiation of shoot and fruit borer (<i>Earias vittella</i>) is advised for the effective control of the pest in okra.
12	Microbial insecticides against sucking pests infesting <i>Bt</i> cotton (2017) The spray of microbial insecticides <i>Lecanicillium lecanii</i> (2 x 10^8 cfu/g -1% WP) or <i>Beauveria bassiana</i> (2 x 10^8 cfu/g -1% WP) @ 40 g /10 litre water at fortnightly interval for three times starting from initiation of sucking pests is advised for the effective biological control of sucking pests infesting <i>Bt</i> cotton.
13	 Bio-intensive module for pod borer and wilt disease in chickpea (2013) For the management of pod borer and wilt in chickpea, following Bio-Intensive Pest Management module can be adopted. Seed treatment with <i>Trichoderma viride</i> (2 x 10⁶ cfu /g) @ 8 g /kg seed at the time of sowing against wilt disease. Use of FYM @ 1 ton/ha enriched with <i>T. viride</i> (2 x 10⁶ cfu /g) (2 kg/ ton of FYM) for wilt disease. Planting marigold (<i>Tagetes erecta</i>) on the borders of chickpea field as trap crop for <i>Helicoverpa armigera</i>. Installation of pheromone traps @ 40 traps/ha at 15 days after sowing for trapping of <i>H. armigera</i> male moths. Installation of "T" shaped bird perches @ 100 /ha at 15 days after germination.

	 Alternate spray of <i>Ha</i>NPV @ 250 LE /ha and Neem Seed Kernel Extract @ 5% during vegetative stage, at flowering stage and at pod formation stage for the suppression of <i>H. armigera</i>.
14	 Bio-Intensive Pest Management module for pests of okra (2013) Below mentioned Bio Intensive Pest Management module is advised for the management of insect-pests of okra. Sowing of the crop during first week of May. Soil application of <i>Paecilomyces lilacinus</i> (2 x 10⁶ cfu/g) @ 25 kg/ha (Talc based formulation) Seed treatment with thiamethoxam 70 WS @ 2.8 g /kg seed (2 g a.i./kg seed). Installation of pheromone traps @ 60 /ha for mass trapping the moths each of <i>Helicoverpa armigera</i> and <i>Earias vittella</i>. Regular clipping of the shoots infested by spotted bollworm. Need based alternate spray of NSKE @ 5% (500 g/10 litre water), <i>Bt</i> (5 x 10⁷ spores /mg) @ 30 g/10 litre water and <i>Beauveria bassiana</i> (2x10⁸ cfu /g) @ 30 g /10 litre water.
15	Microbial insecticides against leaf defoliators infesting paddy (2012) Spraying of <i>Bacillus thuringiensis</i> (5 x 10 ⁷ spores/mg) @ 1.0 kg/ha (20 g/ 10 litre water) or <i>Beauveria bassiana</i> (2 x 10 ⁶ cfu/g) @ 1.0 kg/ha (20 g/ 10 litre water) or <i>Lecanicillium</i> (<i>Verticillium</i>) <i>lecanii</i> (2 x 10 ⁶ cfu/g) @ 1.0 kg/ha (20 g/ 10 litre water) is advised at initiation of leaf folder damage in paddy.
16	Integrated Pest Management module for leaf folder in paddy (2012) The paddy growers are advised to use resistant paddy cultivar (Gurjari), transplanting of paddy seedlings during first fortnight of July and application of NSKE 5% (500 g/ 10 litre water) to suppress the incidence of leaf folder and maintain the population of predatory spiders.
17	Management of sucking pests and shoot & fruit borer through organic insecticides in brinjal (2012) Spraying of cow urine 20% fortified with leaf extract of either neem, custard apple, lantana or jatropha 10% (1 kg/10 litre water) for suppression of sucking pests (aphid, leaf hopper and whitefly) as well as shoot and fruit borer in organically cultivating brinjal.
18	Management of fruit borer, Helicoverpa armigera through microbial insecticides in tomato (2012)Spraying of HaNPV (1.0x109 POB/ml) @ 250 ml/ha (5 ml/ 10 litre water) or Beauveria bassiana (1x 108 cfu/g) @ 1.0 kg/ha (20 g/10 litre water) or Metarhizium anisopliae (1 x 108 cfu/g) @ 1.0 kg/ha (20 g/10 litre water) at 85 days after transplanting suppress fruit borer, Helicoverpa armigera infesting tomato.
19	Microbial insecticides against aphid and head borer in cabbage (2012) Two sprays of <i>Beauveria bassiana</i> (2 x 10 ⁶ cfu/g) or <i>Lecanicillium lecanii</i> (2 x 10 ⁶ cfu/g) @ 30 g/10 litre water at the initiation of pest incidence for suppression of aphid and head borer (<i>Helicoverpa armigera</i>).

• •	
20	Cyst nematode management in pigeonpea (2011)
	Application of talc-based mixture of <i>Trichoderma harzianum</i> (10 ⁸ spores / g) @
	5 kg/ha + Pochonia chlamydosporia (108 spores/g) @ 20 kg/ ha in furrows at the time of
	sowing for effective management of cyst nematode, Heterodera cajani in pigeonpea.
21	Habitat manipulation for natural enemies in <i>Bt</i> cotton (2010)
21	Raising of 10 per cent maize plants randomly or one row of cowpea in-between
	two rows of cotton is advised to reduce the population of jassid and whitefly and increase
	the population of biocontrol agents in <i>Bt</i> cotton.
22	Enhancement of natural enemies in Hybrid cotton (2008)
	Adopt following measures to enhance the activity of natural enemies and thereby
	to suppress the incidence of insect pests in cotton Hybrid-10.
	Interspersing of one row of <i>Cassia occidentalis</i> L. after every six rows of cotton and
	sowing of maize and planting of Zinnia (Zinnia elegans) @ 10% of total population of
	cotton plants
	OR
	Interspersing of one row of Cassia occidentalis L. after every six rows of cotton, sowing
	of maize and planting of Zinnia (Zinnia elegans Jacq.) @ 10% of total plant population
	of cotton plants and one release of <i>Trichogramma chilonis</i> @ 1.5 lakh/ha + <i>Chrysoperla</i>
	carnea @ 5000 larvae (2-3 days old)/ha, coinciding with the appearance of pests.
	Note: Cassia occidentalis should be harvested before ripening of the pods.
23	Conservation of entomophage diversity in Hybrid cotton-10 (2004)
20	For the management of pest complex and to conserve entomophage diversity in
	cotton Hybrid-10, adopt the following IPM package.
	1. Hand picking of different stages of pests and putting them in 60 mesh wire screen
	cages twice during peak incidence.
	2. Interspersing of 10% maize plants with cotton crop, sowing of cotton and maize
	should be done simultaneously.
	3. One release of <i>Chrysoperla carnea</i> @ 14,000 larvae (2-3 days old) synchronizing
	with the appearance of the pests.
	4. Release of <i>Trichogramma chilonis</i> @ 1,50,000 per hectare per week (5 releases),
	first release should be synchronized with the appearance of the bollworms.
24	Management of sucking pests in Hybrid cotton (1994)
	Sucking pests of cotton hybrid-6 can be economically (ICBR 1:4.07) and
	effectively managed and natural biological control agents are conserved by implementing
	following Integrated Pest Management module in middle Gujarat.
	• Application of phorate 10 G 1 kg a.i./ha in soil at 7 days after germination.
	• Planting of two rows of maize and sorghum on the periphery of cotton (These
	plants should be kept free from insecticides).
	• Five releases of Trichogramma chilonis @ 2, 00,000/ha and Chrysoperla
	scelestes and 1,00,000/ha at weekly interval alternatively synchronizing with the
	appearance of bollworms.
	• Spraying monocrotophos 0.04% only on the aphid infested plants which should
	be synchronized with the appearance of aphid.
	• Need based spraying of triazophos 0.05% for sucking pests particularly aphid and
	whitefly.

25	Management of cotton bollworms through biocontrol agents (1988)
	Cotton bollworms <i>i.e. Earias vittella</i> and <i>Heliothis armigera</i> can be satisfactorily
	controlled by supplementary release of Trichogramma chilonis and T. achaeae (Both @
	10,000/acre). Release of Chelonus blackburni @ 5000/acre, Chrysoperla carnea 100
	adults per acre and Rogas aligarhensis 150 adults/acre at fortnightly interval and by
	spraying purified suspension of indigenous NPV of <i>Heliothis armigera</i> @ 10 ⁹ PIB/ml at
	3 days interval. Since Spodoptera litura Fab. often infest cotton, spraying of purified
	suspension of NPV of <i>S. litura</i> in the evening immediately after the occurrence of the pest
	is recommended.
26	Management of pod borer (<i>H. armigera</i>) through <i>Ha</i> NPV in chickpea (1982)
	Spraying crude suspension of an indigenous NPV of H. armigera @ 100 L.U. in
	350-400 litres of water/acre/week effectively control the <i>H. armigera</i> infesting chickpea.
27	Management of fruit borer, <i>H. armigera</i> through <i>HaNPV</i> in tomato (1982)
	Spraying crude suspension of an indigenous NPV of H. armigera @ 100 L.U. in
	350-400 litres of water/acre/week effectively controls the <i>H. armigera</i> infesting tomato.